
Predicting Item Rating by Text Mining and NLP
Analysis with Renttherunway Clothing Fit Dataset

Muchan Li
Halıcıoğlu Data Science Institute

University of California, San Diego
La Jolla, CA 92093
mul005@ucsd.edu

Yunfan Long
Halıcıoğlu Data Science Institute

University of California, San Diego
La Jolla, CA 92093
yulong@ucsd.edu

Abstract

Text Mining and NLP Techniques have demonstrated cutting-edge performance
in a variety of tasks. In this paper, we investigate and employ TFIDF, SkipGram,
and Continuous Bag of Words(CBOW) Model to predict item rating in each user
input. In order to capture the user-item interaction, we used SVD to build our first
baseline model. Since our output are one of the five numbers (2, 4, 6, 8, or 10),
our task essentially becomes a classification task, and we believe logistic linear
regression with softmax output would fit. Hence, we implemented our second
baseline model using logistic regression. For training our model we’ll use the
Renttherunway Clothing Fit Dataset. The dataset includes 15 features detailing the
user features such as weight, height, body type, age, bust size, the item features
including category, ”rented for” (rent purpose), and interaction features like fit,
review text, and review date. We use auroc score, f1 score, accuracy, and mse
as our evaluation metrics. In our first baseline model, we employed SVD model,
which achieves a MSE of 2.3628 after fine-tuning. In the second baseline model,
we implement the logitic regression and get test auroc score of 0.5397, f1 score
of 0.1573, accuracy of 0.6482, and mse 2.8765. Our best final result of baseline
model is the SVD model with mse of 2.3628 for test set. After custom fine-
tuning, we improve the test accuracy to 2.0504 with learning rate of 1e−4 and
1r of 2.6e−3. Applying Text Mining and NLP techniques, we explored TF-IDF,
SkipGram, and CBOW Model. We found that with SkipGram, we get a test auroc
score of 0.8417, f1 score of 0.2877, accuracy of 0.6966, and mse of 1.9651. After
we factor in the similarity for user and item, our SkipGramSim model get test
auroc score of 0.8451, f1 score of 0.3048, accuracy of 0.6968, and mse of 1.8856
as our best result while with TFIDF we got a similar result (mse 2.3993%) as our
baseline model. This is not surprising because SkipGram generates a much more
meaningful and less spatially expensive embedding, which should contain more
context information and thus perform better than the TFIDF model.

1 Introduction

Clothing rental services and providers allow you to enjoy different fashion and apparels while still
maintaining your budget under control. You can look like the top rock star one day, then go to a
wedding in a nice and clean suit the other day, and still come back with a pocket full of hard-earned
cash.

While all seems fun and cool, do you ever wonder how you get promoted the clothes and accessories
you have long been craving right at your finger tips?

1



For giant clothing rental platforms like Rent the Runway, they leverage thousands upon thousands
of customer’s purchase data, profile each and every diverse consumer groups, and therefore deliver
the exact match of you want in the blink of the eye. This giant systematic network is the recom-
mender system. For this project, my team would like to crack open this system ourselves and see
for ourselves how the features of customers and the clothing items interact to determine the rating
of a specific clothing item from scratch.

2 Related Works

Our dataset is conveniently borrowed from Professor McAuley’s lab’s dataset collection. More
specifically, the RentTheRunway dataset is the direct product of Misra, Wan, and McAuley’s pub-
lished paper Decomposing Fit Semantics for Product Size Recommendation in Metric Spaces [1].
Their paper uses this same dataset to primarily address the challenge in clothing product fit predic-
tion arising from the subtle semantics, subjectivity, and imbalanced labeling in customer feedback
reviews. They identify this similar prediction task as ours to be imperative for reasons analogous
to our own–solving this challenge can have tremendous impact in improving customer satisfaction
and generating more profits to the sellers by reducing product returns. The solution they proposed is
metric learning, which essentially aims to learn the customer, product embeddings and a subsequent
distance metric such that for any transaction (i.e. customer-product interaction), the distance metric
between the customer and product of one particular class is maximally different from any pair from a
separate class. Their proposed solution proves to be indeed more accurate compared to conventional
latent factor models as it sees a 6%-7% increase in average AUC.

In addressing this more and more recognized product size fit challenge, other researchers have de-
vised various designs and intuitions. Of these, a few notable state-of-the-art models include the
product size embedding model presented in the paper Learning Embeddings for Product Size Rec-
ommendations by Dogani et. al. [2] and the graph attention network presented in Learning Outfit
Compatibility with Graph Attention Network and Visual-Semantic Embedding by Wang et. al. [4].
Both models see significant improvement in prediction accuracy (the product size embedding model
claims to be as much as 40% more effective) compared to the conventional baseline models such
as matrix factorization. From these background researches, we noticed that using embedding tech-
niques to project interaction data into hidden representation spaces really helps extract the subtle
semantics that would not otherwise be easily uncovered. Concretely, for the product size embedding
model it learns the embedding of user purchase history and brand information and for the graph
attention network it learns the embedding of text descriptors and images. Also, we noticed that it is
rare to find a study that deploys this embedding approach directly on text corpus and relates textual
semantics to product fitting, or in a similar sense star rating, in the case of our project’s focus.

Combining this source of motivation with the skills and experiences we have on modeling texts and
word embeddings, we decided to deploy a Skip Gram and a CBOW model (these two often come
in pairs since their intuitions reciprocate each other) that both deal with learning word semantics.
Then, we can have the textual semantics in conjunction with the numeric features per customer
product interaction predict the rating one would give to a product.

[1] Misra, R., Wan, M., & McAuley, J. (2018, September). Decomposing fit semantics for product
size recommendation in metric spaces. In Proceedings of the 12th ACM Conference on Recom-
mender Systems (pp. 422-426).

[2] Dogani, K., Tomassetti, M., Vargas, S., Chamberlain, B. P., & De Cnudde, S. (2019, July).
“Learning Embeddings for Product Size Recommendations.” In eCOM@ SIGIR.

[3] J. McAuley. Lecture 6-10: Latent Factor Model & Recommender System Evaluation, lecture
notes, Department of Computer Science, University of California San Diego, Nov 2022.

[4] Wang, J., Cheng, X., Wang, R., & Liu, S. (2021, July). “Learning outfit compatibility with
graph attention network and visual-semantic embedding”. In 2021 IEEE International Conference
on Multimedia and Expo (ICME) (pp. 1-6). IEEE.

2



3 Dataset

3.1 Dataset Used

Figure 1: Sample Renttherunway data

The Renttherunway Clothing Fit Dataset consists of 192544 records of user reviews with 15 columns
and 5 rating classes, with unbanlanced distribution per class. We perform a 80-20 train-test split to
understand how well our model generalize on unseen data. The training set contain the records in
random order, but training set contains different number of records from one class than another, and
the test set follow the similar distribution. Table 1 below demonstrates the size of training data and
testing for the different rating classes

Table 1: Data statistics

Class Training Set Test Set

2 99583 24948
4 42799 10589
6 8504 2193
8 2240 551
10 835 210

3.2 Dataset Statistics

First and foremost, the data frame obtained from reading in JSON formatted data file has 192544
entries, meaning there are 192544 unique customer feedbacks identified by the unique combination
of user ID and item ID. The data frame has 15 columns, each storing one attribute. Below is a
quick description of each attribute: “fit”: whether the cloth fitted or not “user id”: unique cus-
tomer identifier “bust size”: customer’s bust size “item id”: unique identifier of the rented clothing
product “weight”: the customer’s body weight “rating”: customer’s star rating of this cloth renting
experience “rented for”: the occasion of this cloth renting “review text”: the review text corpus in
bulk from the customer “body type”: customer’s body type “review summary”: short summary
of the customer’s review “category”: the category that the rented cloth belongs to “height”: the cus-
tomer’s height “size”: the clothing product’s size in its respective category “age”: the customer’s
age “review date”: the date that the current review is submitted

3



df_raw.isna().mean()
fit 0.00000
user id 0.00000
bust size 0.09562
item id 0.00000
weight 0.155715
rating 0.000426
rented for 0.000052
review text 0.00000
body type 0.076019
review summary 0.00000
category 0.00000
height 0.03516
size 0.00000
age 0.004986
review date 0.00000

Table 2: Proportion of missing values by feature

Among these 15 features, we assessed and observed that 7 of these contain missing or null values,
which are “bust size”, “weight”, “rating”, “rented for”, “body type”, “height”, and “age”. To account
for these, we devised a two-step approach. For step one, we would drop any customer entry that
does not have a rating. We believe this is the best action to take since a customer’s rating on the
renting experience is the very subject that we would like to predict using our models, which we
will elaborate in the following section on “Predictive Task”. We also strip the ”lb” and convert
the string type ”weight” column to numeric type , similarly, converting all string type ”height” to
numeric type in inches. What’s more, we convert the bust size original in string format and has
many variants (eg. ”32b”, ”33b”, ”34b”) to numeric type (eg. 32, 33, 34). For step two, we impute
the rest of the missing values using different measures depending on its level of measurement (i.e.
whether it is qualitative or quantitative). For qualitative missing data, such as missing “body type”
or “rented for”, we imputed them with the mode of their respective columns; for quantitative data
(after processing) instead, we imputed with the mean of their respective columns.

Table 3: Statistics of User Features

bust number weight height size age
count 192452.00000 192452.00000 192452.00000 192452.00000 192452.00000
mean 34.18240 136.24189 65.306056 12.245521 33.855860
std 1.660858 20.300442 2.660093 8.495457 8.040119
min 28.00000 50.00000 54.00000 0.00000 0.00000
25% 34.00000 125.00000 63.00000 8.00000 29.00000
50% 34.00000 130.00000 65.00000 12.00000 32.00000
75% 36.00000 145.00000 67.00000 16.00000 37.00000
max 48.00000 300.00000 78.00000 58.00000 117.00000

To quickly get a sense of the spread of numeric data in our data frame, Table 3 above present the
brief summary of order statistics for our numeric features (bust size, weight, height, size, and age)
after completing the simple steps of data preprocessing as described in the paragraph above. It is
interesting to note that after the series of dropping and cleaning missing values, we only lost a little
fewer than 100 review records as we remained with 192452 entries. It is also interesting to see that
the minimum value for age among our customers is as low as 0, meaning we probably have people
renting clothes for their 0-year-old infants. The maximum values across all 5 attributes still make
sense, so the dataset seems to contain little to no outliers. We then proceed with observing trends.

4



3.3 Exploratory Data Analysis

We observed some basic trends in our dataset. For instance, our dataset contains a disproportionately
high number of max rating scores while very little negative, low ratings, as shown in figure 2 below.
This is something we should certainly consider if we are going to train some type of classifier in
order for it to make actually useful predictions, not just predominantly spitting out perfect scores.

Figure 2: Rating Distribution

Among different occasions that customers rent a cloth for, “wedding”, “party”, and “formal affairs”
are more prevalent, as shown in figure 3 below, which is expected.

Figure 3: Rent Purporse Distribution

The distribution of the “fittingness” in figure 4 below as included in one of the most vital parts of
the customer feedback is laid out as follows. Fortunately, the renting service so far seems successful
as the predominant proportion of feedback indicates the clothes fit well.

5



Figure 4: Fit Distribution

3.4 Interesting Text Level Findings

Since we have a piece of detailed and thoughtfully-written text review for each entry of our dataset,
we decided to chain all reviews corpus together and break them back into individual words, then
assess and visualize the popularity of individual word choices and the sentiments across reviews
that correspond to high rating (a perfect 10 star), average rating (a mediocre 6 star), and low rating
(the lowest 2 star on the rating scale for this dataset) using word clouds.

Figure 5: 10-star rating word cloud

From the 10-star review word cloud shown in figure 5 above, we can obviously pick up some positive
sentiments, such as “perfect”, “comfortable”, “compliments”, “definitely”, “loved”, etc. These are
all strong evidences that indicate the customers really enjoyed the cloth.

6



Figure 6: 6-star rating word cloud

From the 6-star review word cloud in figure 6 above, we can still pick up a few positive sentiments,
such as “great”, “fit”, “pretty”, and such. However, there is certainly less number of positive adjec-
tives, indicating that customers no longer compliment the cloth as often as some of them do when
they come across a perfect one and rate it 10 stars. But still, because of the more prevalent presence
of positive sentiments as the ones observed, these clothes are overall still satisfactory, hence why
they received 6 stars.

Figure 7: 2-star rating word cloud

Lastly, from the 2-star review word cloud in figure 7 above, we see quite some complaints, presum-
ably about the size of the clothes, such as “short”, “big”, “small”, “tight”, “long”, and such. It is not
hard to understand from this perspective that these clothes are not appreciated, hence they only have
2 stars.

Therefore, given the distinct sentiments and popular word representations as revealed by the word
clouds from three different categories of reviews, we believe we can extract some useful insights
from them and make whatever model we will eventually deploy to handle our predictive task better
at differentiating different comments and assigning corresponding star ratings.

4 Predictive Task

4.1 Problem Statement

Given a new user interaction record (except the user’s rating), predict the user rating on the current
rented item for every record in the Dataset.

4.2 Importance

Suppose we are able to develop a model that accurately predicts customer ratings given only the
relevant review information from a customer, we can very efficiently and conveniently interpret the
parameters of this model and in turn learn the subtle traits and differences that separate appreci-
ated cloth products from the not-so-appreciated cloth products. This information can profoundly

7



help the platform and the business learn their consumers’ preferences and improve their products,
consequently generating more revenue.

4.3 Proposed Models

Baseline models:
Singular Value Decomposition (SVD)
Logistic Regression

Text Mining & NLP model:
Logistic Regression with TF-IDF
Logistic Regression with Skip Gram
Logistic Regression with Continuous Bag of Words (CBOW)

4.4 Model Evaluation

Mean Squared Error (MSE):
This metric is mainly used in assessing the performance of the baseline SVD model since it predicts
continuous numeric values from the trained values drawn from the decomposed representation
matrices.

F1 Score:
This metric is adopted since the majority of our models are classifiers and it is important for
our classifiers to find an optimal balance in the tradeoff between precision and recall. This also
addresses the imbalance in our dataset.

AUROC (or AUC):
This metric is an important alternative to F1 score since using it as evaluation pushes our classifiers
to achieve the balance between true positive rate and false positive rate.

Accuracy:
This metric is used since it is a straightforward representation of how well our classifiers’ predicted
ratings are in proportion to the true ratings.

4.5 Data Preprocessing & Feature Engineering

On top of the preliminary missing value imputation we performed while we were having an
overview of the dataset, below is the complete procedure of all feature engineering and feature
selection we did in order to turn our raw data into clean data for model training.

• We extracted 2 new features “cup” and “bust number” from the original ”bust size” through
text manipulation.

• We one-hot-encoded all kinds of “cup” and “body type”.

• We created 12 similarity features purely from customer and item interactions.

• We created 3 features that capture the maximum, mean, and median of a particular
customer’s Jaccard similarity compared to all other customers that have interacted with

8



the same clothing item by comparing the current user’s item interaction history with other
user’s item interaction history.

• We created 3 features that capture the maximum, mean, and median of a particular clothing
item’s Jaccard similarity compared to all other clothing items that the current customer
has interacted with by comparing the current item’s user interaction history with the other
item’s user interaction history.

• We created 3 more features that measure and capture the same interaction as described in
part a, except we switch the similarity function from Jaccard similarity to cosine similarity.

• We also created 3 more features that capture the same interaction as described in part b,
except we substitute Jaccard similarity function with cosine similarity when performing
the similarity calculation.

• We finally concatenate the 12 similarity features with the 2 one-hot-encoded features and
the preprocessed numeric features “bust number”, “weight”, “height”, “size”, and “age” to
form our training set data (For TFIDF, CBOW, and SkipGram models, we deployed addi-
tional TF-IDF feature vectorizers or word embeddings, we will explain these new additions
in their respective section down below).

5 Models

5.1 SVD Baseline

5.1.1 Final Setting

Hyperparameters Value

n factors 100
n epochs 30
lr all 1e−4

reg all 2.6e−3

Table 4: Final experiment setting of baseline model

5.1.2 Motivation

At first, our interaction data looks like a high dimensional sparse matrix with a lot of user-item
iteractions. By using the SVD, we can perform principle component analysis (PCA) that aims to
decompose a matrix (usually a set of observations) in order to find the principal axes in which the
observations have the largest variance. In this way, we can find the directions in which our data are
distributed, which is useful for dimensionality reduction. The two seperate representation matrix
can be used to BetaU and BetaI of the latent factor model, which has proven to be very effective for
dealing with interaction data.

5.1.3 Issues & Unsuccessful Attempts

When we first train the model, we tried to run 150 epochs learning rate of 5e−5. While this gives
excellent training mse of 0.5324, the test accuracy suffers from overfitting. As a result, we adjust the
learning rate to be 1e−4 and the model converges in 30 epochs and we get better test mse of 2.0504.

5.1.4 Results

In our first baseline model shown in table 4, we employed SVD model. We use mse as the evaluation
metric because measuring the accuracy of prediction made by SVD would not make sense because

9



SVD performs linear regression so that it’s unable to map the prediction to one of the exact outputs.
With default parameters of SVD, we get test mse of 2.3628 for test set. After custom fine-tuning,
we improve the test accuracy to 2.0504 with learning rate of 1e−4 and 1r of 2.6e−3.

5.2 Logistic Regression Baseline

5.2.1 Final Setting

Hyperparameters Value

max iter 300
C 0.7
class weight banlanced
multi class multinomial

Table 5: Final experiment setting of baseline model

5.2.2 Motivation

A multinomial classification problem is very suitable for a logistic regression model with softmax
output. We believe the added non-linearity of a logistic regression makes it ideal for this predictive
task.

5.2.3 Issues & Unsuccessful Attempts

When we first train the model, we tried to perform one-hot encoding on every words. This makes
our matrix dimension huge and generates very poor mse of 6.2352. We then decides to use Text
Mining and NLP model to deal with the ”review” column and focus on all the low-level features for
the baseline model.

5.2.4 Results

In our second baseline model shown in table 5, we employed logistic regression model. We use
all four metrics to evaluate the performance of our model. get test auroc score of 0.5397, f1 score
of 0.1573, accuracy of 0.6482, and mse 2.8765. This is expected because by simply using logistic
regression without extracting more meanings from the reviews or user-item interaction, it is natural
to give noncompetitive results.

5.2.5 Best Result among Baseline Models

Our final setting of the hyperparameters are listed as the table 4 above. It correspond to our best
final result from our custom fine-tuned SVD baseline which achieves a test mse of 2.0504.

5.3 TFIDF Model

5.3.1 Final Setting

Hyperparameters Value

max iter 400
C 0.62
class weight banlanced
multi class multinomial

Table 6: Final experiment setting of baseline model

10



5.3.2 Motivation

5.3.3 Issues & Unsuccessful Attempts

We encountered a dimension mismatch issue when building a pipeline of countVectorizer and Tfidf-
Transformer. It tooks us a while to realize that the TfidfTransformer only accept pd.Series input.
Therefore, we add a convert pipeline in ColumnTransformer to transform the input to pd.Series first
by using squeeze() to get it to work. While the TFIDF turns out to be computationally inexpensive.
It is computationally expensive. Since we generated a vocab of size 5278 and have 192452 entries
in our training set We get a training set containing 153961 records. Remember that the vocabulary
size is equal to the length of the TF-IDF vectors. The generated tfidf feature matrix has a size of
153961×5278, which is huge. The dimensionality curse can affect TF-IDF. In clustering, it becomes
very cumbersome given the large number of records in our dataset. As a results, our model suffers
from being overly complex and thus get a unsatisfatory result of get test auroc score of 0.5482, f1
score of 0.1881, accuracy of 0.6523, and mse 2.4525.

5.3.4 Results

After custom fine-tuning, we get better test auroc score of 0.7183, f1 score of 0.1881, accuracy of
0.6560, and mse 2.0504.

5.4 SkipGram

5.4.1 Final Setting

Hyperparameters Value

max iter 200
C 0.53
size features 300
n jobs 10
class weight banlanced
multi class multinomial

Table 7: Final experiment setting of baseline model

5.4.2 Motivation

As we can see above, the tfidf model doesn’t work well because of the exploding dimensionality,
which makes the number of parameters that need to be learned by the logistic regression unreason-
able, which can also be a potential overfit. Therefore, we decided to use SkipGram to embed the
vocabs while maintaining a reasonable dimension so that learning is still effective.

5.4.3 Issues & Unsuccessful Attempts

The training was extremely slow because we didn’t set the n jobs to 10. Therefore, only 1 CPU was
used to run the model and it took very long. We didn’t set the n workers earlier when training the
tf idf model either, but as we discussed, tfidf is much faster to train, therefore we overlooked the fact
that Word2Vec model is much harder to train and thus need parallel computing.

5.4.4 Results

After custom fine-tuning, we get test auroc score of 0.8417, f1 score of 0.2877, accuracy of 0.6965,
and mse of 1.9651.

11



5.5 CBOW

5.5.1 Final Setting

Hyperparameters Value

max iter 200
C 0.67
size features 100
n jobs 10
class weight banlanced
multi class multinomial

Table 8: Final experiment setting of baseline model

5.5.2 Motivation

CBOW and SkipGram are twins and they work in the exact reverse way. What’s more, we believe
that CBOW performs better when the vocabulary is larger. Our vocabulary has more than 30000
words and we want to give it a try.

5.5.3 Issues & Unsuccessful Attempts

The training procedure of CBOW is very easy after building up the structure for Word2Vec, the only
notable thing is that we forgot to change the parameter sg in Word2Vec to 0 (meaning CBOW) but
left it 1 (meaning SkipGram)

5.5.4 Results

After custom fine-tuning, we get test auroc score of 0.7888, f1 score of 0.2514, accuracy of 0.6715,
and mse of 2.2414.

5.6 SkipGram + Similarity

5.6.1 Final Setting

Hyperparameters Value

max iter 200
C 0.57
size features 100
n jobs 10
class weight banlanced
multi class multinomial

Table 9: Final experiment setting of baseline model

5.6.2 Motivation

As we can see, the SVD baseline worked quite well. This makes us wonder whether capturing the
user-item similarities in our dataframe would result in better accuracy in the logistic regression in
SkipGram model.

5.6.3 Issues & Unsuccessful Attempts

We miscalculated the user and item similarity first. This result in the mse of SkipGramSim being
worse than the SkipGram. After we retifying it, the mse becomes better and this model becomes
the best model overall.

12



5.6.4 Results

After custom fine-tuning, we get test auroc score of 0.8451, f1 score of 0.3048, accuracy of 0.6968,
and mse of 1.8856.

5.6.5 Compare & Contrast

This figure above shows the comparison of all models performance.

Table 10: All Model Comparison

Metric Logistic Regression (base) TFIDF CBOW SkipGram + Similarity SkipGram SVD (base)
auroc 0.5397 0.7183 0.7888 0.8451 0.8417 NaN
f1 score 0.1573 0.2147 0.2514 0.3048 0.2877 NaN
accuracy 0.6482 0.6560 0.6715 0.6968 0.6966 NaN
mse 2.8765 2.3993 2.2414 1.8856 1.9651 2.0504

This figure above shows the comparison of SkipGram + Similiarity compare with SkipGram.

Table 11: SkipGram + Similarity vs. SkipGram

Metric SkipGram SkipGram + Similarity Improvement
auroc 0.8417 0.8451 0.0034
f1 score 0.2877 0.3048 0.0171
accuracy 0.6966 0.6968 0.0002
mse 1.9651 1.8856 -0.0795

This figure above shows the comparison of SkipGram + Similiarity compare with Logic Regression.

Table 12: SkipGram + Similarity vs. Logistic Regression Baseline

Metric Logistic Regression (base) SkipGram + Similarity Improvement
auroc 0.5397 0.8451 0.3055
f1 score 0.1573 0.3048 0.1475
accuracy 0.6482 0.6968 0.0486
mse 2.8765 1.8856 -0.9909

Table 13: SkipGram + Similarity vs. SVD

Metric SVD (base) SkipGram + Similarity Improvement
auroc NaN 0.8451 NaN
f1 score NaN 0.3048 NaN
accuracy NaN 0.6968 NaN
mse 2.0504 1.8856 -0.1648

This figure above shows the comparison of SkipGram + Similiarity compare with SVD Baseline.

As we can see, the SkipGram + Similarity model has achieved the best score for every eveluation
metrics, with test auroc score of 0.8417, f1 score of 0.2877, accuracy of 0.6965, and mse of 1.9651.

6 Results and Conclusion

The graph below presents the testset performance of all our proposed models. We cumulatively
assess the performance of each by checking it against all 4 metrics, MSE, AUROC, F1 score, and
accuracy, with the only exception being our baseline SVD model because it only outputs continuous
rating values instead of categorically classifying them. Our most ideal logistic regression model
using Skip Gram word embedding plus all 12 similarity features consistently outperformed all other

13



models and its winning marginal is statistically significant. In particular, this model has the best test
set MSE at 1.8856, best test set accuracy at 0.6968, best test set F1 score of 0.3048, best test set
AUROC 0.8451.

Its outstanding performance is in alignment with our expectations as Skip Gram is particularly spe-
cialized in predicting context from individual words, and the context (whether it is overall positive,
neutral, negative) of a review directly correlates to the rating the product receives. It is interesting
we did not discover this combination of Skip Gram word embedding and supplying similarity scores
to be the best performing candidate from the start.

We did not discover this just from pure coincidence either. We had this intuition from observing
the performance of the baseline SVD model. The SVD model essentially relies solely on customer
product interactions and factorizes them into representation matrices of smaller dimensions. With
its test set MSE being only second to Skip Gram based models, we realized that the interactions
in our dataset may be vital to making accurate rating predictions, hence why we came up one step
further with the Skip Gram plus similarity feature model. Lastly, it is crucial to tie our established
model back to the thesis we started with. In the beginning, we said that our problem statement can
have significant application in understanding customer preferences. For the Skip Gram plus sim-
ilarity model, while it may be harder to interpret the trained parameters (in this case, the weights
corresponding to each feature) of the classifier, especially the ones for the word embeddings since
it resides in a hidden space that we can hardly conceptualize, since we know there are still ordinary,
categorical variables, such as the one-hot-encoded body types, we can for the very least interpret
the weights of these attributes and get a sense of how on category may influence the rating predic-
tion. From the graph below, we can see that for instance, the variable “age” has a positive weight of
0.006191 associated with it, meaning the age of the customer has a positive influence on the rating
he/she may give to the cloth (perhaps older people are nicer in giving out compliments). Alterna-
tively, we see that the height of a customer has a negative weight of -0.034072 associated with it,
meaning that for taller customers renting out clothes, they may more closely examine whether the
cloth fits their needs, thus giving out stricter ratings. Examining weights in association with the
interpretable features in such a way helps the merchants understand which group of their customers
may require more attentive service, which group is more generous, etc. This information can help
them maintain and even improve their products and business.

For further work, we would really like to implement the metric learning method mentioned in the
paper by Misra et. al.. Like we briefly mentioned, our dataset is imbalanced and we did set the class
weights when training our classifiers to be balanced to naively offset this shortcoming. However,
it would be great to have this issue mitigated before training. Moreover, given time, we would like
to continually elaborate our model implementation. One of the topics we would want to explore
is temporal dynamics. For this dataset, we did not include the temporal relationship because we
explored its relationship with respect to other variables and deemed it not helpful. But if we were
able to encode it and pass it in as one of our features, we could actually see where it has effectiveness.
The other model we would like to deploy is transfer learning with some pre-trained BERT. We
believe this can help us generate more meaningful word embeddings and thus uncover stronger
semantics and contexts from review texts. Lastly, we would really like to incorporate our model into
a recommendation system pipeline so that it not only makes predictions from a complete customer-
product interaction, it also generates interaction targets from seeing only the customer or the product,
which is much more applicable and analogous to a real world recommendation system.

(See table14 on the next page for the coefficients.)

14



feature weight
bust number 0.053838
weight 0.002869
height -0.034072
size -0.013356
age 0.006191
cup a 0.016090
cup aa 0.004879
cup b -0.038426
cup c -0.007692
cup d 0.028213
cup d+ 0.008662
cup dd -0.007230
cup ddd/e -0.018116
cup f -0.002192
cup g 0.002937
cup h 0.001954
cup i 0.000064
cup j 0.001559
body type apple 0.031831
body type athletic -0.051181
body type full bust 0.002061
body type hourglass -0.052512
body type pear 0.066139
body type petite 0.007601
body type straight & narrow -0.013236
intercept -0.009297

Table 14: Features and Their Weights

15


	Introduction
	Related Works
	Dataset
	Dataset Used
	Dataset Statistics
	Exploratory Data Analysis
	Interesting Text Level Findings

	Predictive Task
	Problem Statement
	Importance
	Proposed Models
	Model Evaluation
	Data Preprocessing & Feature Engineering

	Models
	SVD Baseline
	Final Setting
	Motivation
	Issues & Unsuccessful Attempts
	Results

	Logistic Regression Baseline
	Final Setting
	Motivation
	Issues & Unsuccessful Attempts
	Results
	Best Result among Baseline Models

	TFIDF Model
	Final Setting
	Motivation
	Issues & Unsuccessful Attempts
	Results

	SkipGram
	Final Setting
	Motivation
	Issues & Unsuccessful Attempts
	Results

	CBOW
	Final Setting
	Motivation
	Issues & Unsuccessful Attempts
	Results

	SkipGram + Similarity
	Final Setting
	Motivation
	Issues & Unsuccessful Attempts
	Results
	Compare & Contrast


	Results and Conclusion

